A Bayesian Model to Forecast New Product Performance in Domestic and International Markets

نویسندگان

  • Ramya Neelamegham
  • Pradeep Chintagunta
چکیده

This paper attempts to shed light on the following research questions: When a firm introduces a new product (or service) how can it effectively use the different information sources available to generate reliable new product performance forecasts? How can the firm account for varying information availability at different stages of the new product launch and generate forecasts at each stage? We address these questions in the context of the sequential launches of motion pictures in international markets. Players in the motion picture industry require forecasts at different stages of the movie launch process to aid decisionmaking, and the information sets available to generate such forecasts vary at different stages. Despite the importance of such forecasts, the industry struggles to understand and predict sales of new movies in domestic and overseas markets. We develop a Bayesian modeling framework that predicts first-week viewership for new movies in both domestic and several international markets. We focus on the first week because industry players involved in international markets (studios, distributors, and exhibitors) are most interested in these predictions. We draw on existing literature on forecasting performance of new movies to formulate our model. Specifically, we model the number of viewers of a movie in a given week using a Poisson count data model. The number of screens, distribution strategy, movie attributes such as genre, and presence/absence of stars are among the factors modeled to influence viewership. We employ a hierarchical Bayes formulation of the Poisson model that allows the determinants of viewership to vary across countries. We adopt the Bayesian approach for two reasons: First, it provides a convenient framework to model varying assumptions of information availability; specifically, it allows us to make forecasts by combining different sources of information such as domestic and international market-specific data. Second, this methodology provides us with the entire distribution of the new movie’s performance forecast. Such a predictive distribution is more informative than a point estimate and provides a measure of the uncertainty in the forecasts. We propose a Bayesian prediction procedure that provides viewership forecasts at different stages of the new movie release process. The methodology provides forecasts under a number of information availability scenarios. Thus, forecasts can be obtained with just information from a historical database containing data on previous new product launches in several international markets. As more information becomes available, the forecasting methodology allows us to combine historical information with data on the performance of the new product in the domestic market and thereby to make forecasts with less uncertainty and greater accuracy. Our results indicate that for all the countries in the data set the number of screens on which a movie is released is the most important influence on viewership. Furthermore, we find that local distribution improves movie sales internationally in contrast to the domestic market. We also find evidence of similar genre preferences in geographically disparate countries. We find that the proposed model provides accurate forecasts at the movie-country level. Further, the model outperforms all the extant models in the marketing literature that could potentially be used for making these forecasts. A comparison of root mean square and mean absolute errors for movies in a hold out sample shows that the model that combines information available from the different sources generates the lowest errors. A Bayesian predictive model selection criterion corroborates the superior performance of this model. We demonstrate that the Bayesian model can be combined with industry rules of thumb to generate cumulative box office forecasts. In summary, this research demonstrates a Bayesian modeling framework that allows the use of different information sources to make new product forecasts in domestic and international markets. Our results underscore the theme that each movie is unique as is each country—and viewership results from an interaction of the product and the market. Hence, the motion picture industry should use both productspecific and market-specific information to make newmovie performance forecasts. (Hierarchical Bayes; New Products; Motion Pictures; International Markets; Forecasting) A BAYESIAN MODEL TO FORECAST NEW PRODUCT PERFORMANCE IN DOMESTIC AND INTERNATIONAL MARKETS 116 Marketing Science/Vol. 18, No. 2, 1999

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Relationship between Accounting Earning and Gross Domestic Product in Companies Listed in Tehran Stock Exchange

Accounting earning represents the positive performance of companies during theirpertinent financial periods, thus it is assumed that accounting earning will benoted by investors, which could contribute to the optimum allocation of resourcesto successful companies. It can also play a major role in the economic growth anddevelopment of a society. This research focuses in the relationship between ...

متن کامل

Day-ahead Price Forecasting of Electricity Markets by a New Hybrid Forecast Method

Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, non-stationary, and time variant behavior of electricity price time series. Accordingly, in this paper a new strategy is proposed for electricity price forecast. The forecast strategy includes Wavelet Transform (WT...

متن کامل

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Forecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market

Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999